Bruker公司开发的捕获离子迁移率谱(trapped ion mobility spectrometry, TIMS)结合高分辨率飞行时间质谱(time-of-flight, TOF)的技术催生了timsTOF系列质谱系统,自2018商品化以来广泛应用于蛋白质组学领域,让这位在核磁谱学领域的“富二代”强势攻入生命科学质谱,成了新领域的“拼一代”。如今,Bruker质谱正以每年更新一款的速度实现快速的产品迭代(笔者注:据网络,用户可以以后期“升级”的方式实现旧换新),并通过频繁的收购(如2020年收购蛋白质组搜索引擎IP2、2022年收购色谱配件PepSep、2023年收购单细胞蛋白质组分析方案PhenomeX)、投资(如2023年实现对泛蛋白质组分析方案Biognosys的主要控股)、合作(如与IonOpticks的OEM合作、与国内几乎所有中大规模的蛋白质组科研服务公司的“战略”合作)等动作,实现其在蛋白质组分析上中下游全领域的渗透。
Bruker质谱能成功,与PASEF方法的建立有果因关系。PASEF全称平行累积-连续碎片化(Parallel Accumulation-Serial Fragmentation),是一种根据tims独特结构而开发的离子迁移和富集技术,可以实现对飞入质谱系统的多肽离子的高效利用,达到了分辨率和灵敏度的双重提高(下图展示了一种初代tims的结构(a)、及其对应的PASEF实现方式(b))。

来自卢森堡的研究者们日前在Expert Review of Proteomics上公开了他们关于PASEF方法的综述,汇总了截至投稿(2024年7月)的十一种基于PASEF开发出的质谱采集方法。论文链接:https://www.tandfonline.com/doi/full/10.1080/14789450.2024.2413092。论文对PASEF的本身技术更迭、对应的质谱方法种类、与重要的应用场景都做了漂亮的介绍,且文字并不冗长,非常推荐读者们赏读并继往开来;笔者在这里不做发挥,仅将11种方法列举于表格(见下表)。为避免与原文不对应,不对表格内容做翻译。
| PASEF Method | Applications | Advantages | Limitations | Data Analysis Tools | 
| DDA-PASEF | Discovery;Quantification at the MS1 level;Spectral library generation | Data completeness;Stochasticity of the DDA principle | AlphaTIMS,Mascot,MaxQuant,MS Fragger,ProteoScape,PEAKS XPro,Skyline,SpectroMine | |
| caps-PASEF | Cross-linking mass spectrometry | Reduced selection of mono-linked peptides leads;Increased identification of cross-linked peptides;More effective in preventing the loss of cross-linked peptides in comparison to charge state-based filters | Non-linked and mono-linked peptides still present;Specialized software needed | XlinkXFragmentLabMeroX | 
| Thunder-DDA-PASEF | Immunopeptidomics, specifically small peptides | Increased likelihood of fragmenting low-abundant peptides;Better separation of co-eluting peptides | Optimized for HLA-I, but not HLA-II peptides | MaxQuant,MS Fragger,PEAKS XPro | 
| diaPASEF | Discovery, Quantifications at the MS2 level | Overcoming undersampling compared to DDA-PASEF | Limitations are the same as for DIA | AlphaTIMS,DIA-NN,MaxQuant,MS Fragger,Mobi-DIK in OpenSWATH,ProteoScape,Skyline,SpectroMine,Spectronaut | 
| Thin-diaPASEF | Deep proteome profiling | More sensitive to low-abundant peptides | Covers a smaller region of precursor ions;Longer cycle time;Decreased throughput | DIA-NN,ProteoScape,Spectronaut | 
| slice-PASEF | Discovery, low amounts | Increased identifications on precursor and protein group level;More precisely quantified peptides;Boosted peptide signals | Increased cycle time for multiple-frame approaches | DIA-NN, v 1.8.2 and v 1.9.1 | 
| synchro-PASEF | Discovery | Short cycle times;Higher fragment intensities | Method design needs access for field programmable gate array of the Q1 | AlphaTIMSDIA-NN, v 1.9.1 | 
| midiaPASEF | Discovery, generation;Spectral library generation;De novo sequencing | Increased fragment ion sensitivity;Increased duty cycle;Characteristic MIDIA fingerprints help identifying low-abundant peptides;Increased spectral purity with low interferences or unassigned peaks;Increased mass accuracy and ion statistics;Independent on reconstruction slicing pattern compared to synchro-PASEF | Method design needs access for field programmable gate array of the Q1 | MIDIAID pipeline | 
| speedy-PASEF | Cohort analysis;Routine analysis | Fast chromatographic methods;High throughput;Decreased sample carry-over between runs;Accelerated column equilibration;Sharper peaks;Higher peak capacity | High sample amount needed (2000 – 3000 ng) | DIA-NN | 
| prm-PASEF | Targeted proteomics | Removes interferences;Increased sensitivity;Possibility of absolute quantification;Possibility of highly multiplexing the PRM | Ion mobilities have to be taken into account | Skyline,Spectrodive | 
| g-dia-PASEF | Targeted proteomics, Discovery | Fast measurement;Absolute quantification for selected peptides;Fewer optimization steps need than for prm-PASEF;Higher sensitivity than diaPASEF | Less sensitive than prm-PASEF | DIA-NN,Skyline,Spectronaut |